C

AN oLl Ye
e o

Implementing properties to access fields

motivation

* Consider the following structure that represents a position on a
computer screen as a pair of coordinates, x and y. Assume that the
range of valid values for the x-coordinate lies between 0 and 1280,

and the range of valid values for the y-coordinate lies between 0 and
1024.

motivation (1)

struct ScreenPosition private static int rangeCheckedX(int x) {
{ if (x<0 || x>1280){
publicint X; throw new ArgumentOutOfRangeException("X");
publicint; }
return x;
public ScreenPosition(int x, int y) }
{
this.X = rangeCheckedX(x); private static int rangeCheckedY(int y) {
this.Y = rangeCheckedY(y); if (y<0||y>1024){
} throw new ArgumentOutOfRangeException("Y");
} }
returny;

Problem with ScreenPosition?

* Public data is often a bad idea because the class cannot control the
values that an application specifies

* Examplew - the ScreenPosition constructor checks but ...
ScreenPosition origin = new ScreenPosition(0, 0);

int xpos = origin.X;
origin.Y =-100; // oops

Solution to the access problem

* The common way to solve this problem

* make the fields private and add an accessor method and a modifier method to respectively read
and write the value of each private field.

struct ScreenPosition{

public int GetX()
{ return this.x; }
public void SetX(int newX)
{ this.x = rangeCheckedX(newX); }

private static int rangeCheckedX(int x) { ... }
private static int rangeCheckedY(inty){ ... }
private int x, y;

The price of the proposed solution

e ScreenPosition no longer has a natural field-like syntax
* it uses awkward method-based syntax instead.

int xpos = origin.GetX();
origin.SetX(xpos + 10);

Are you motivated to use properties?

* There is no doubt that, in this case, using public fields is syntactically
cleaner, shorter, and easier. Unfortunately, using public fields breaks
encapsulation. By using properties, you can combine the best of both
worlds (fields and methods) to retain encapsulation while providing a
field-like syntax.

What are properties?

* A property is a cross between a field and a method
* it looks like a field
* acts like a method

* The syntax for a property declaration
AccessModifier Type PropertyName
{
get { // read accessor code }
set { // write accessor code }

ScreenPosition with property

struct ScreenPosition{ public int X {
private int _x, _v; get { return this._x; }
public ScreenPosition(int X, int Y) { set {this._x = rangeCheckedX(value);}
this._x = rangeCheckedX(X);)
this._y = rangeCheckedY(Y); o
\ publicintY {

get { return this._y; }
private static int rangeCheckedX(int x){ ... } ,
_ o _ set {this._y = rangeCheckedY(value);}
private static int rangeCheckedY(inty) { ... }

ScreenPosition with property

struct ScreenPosition{ public int X {

private int _x, _y; get { return this._x; }

public ScreenPosition(int X, int Y) { set {this._x = rangeCheckedX(value);}

this._x = rangeCheckedX(X); this._y=)

rangeCheckedY(Y);

} publicint Y {

private static int rangeCheckedX(int x){ ... } get 1 re.tum this._y; }

private static int rangeCheckedY(inty) { ... } set {this._y = rangeCheckedY(value);}
} }

Lowercase x and _y are private fields.
Uppercase X and Y are public properties.
All set accessors are passed the data to be written by using a hidden, built-in parameter named value.

Note

* In this example, a private field directly implements each property, but
this is only one way to implement a property.

 All that is required is for a get accessor to return a value of the
specified type. Such a value can easily be calculated dynamically
rather than being simply retrieved from stored data, in which case

there would be no need for a physical field.

* The definition of properties are equally applicable to classes; the
syntax is the same.

Using properties

* When you use a property in an expression, you can use it in a read context
(when you are retrieving its value) and in a write context (when you are
modifying its value).

ScreenPosition origin = new ScreenPosition(0, 0);
int xpos = origin.X; // calls origin.X.get()
int ypos = origin.Y; // calls origin.Y.get()

origin.X = 40; // calls origin.X.set, with value set to 40
originY = 100; // calls origin.Y.Set, with value set to 100

Read-only properties

struct ScreenPosition

{
private int _x;
public int X
{
get { return this._x; }
}
}

origin.X = 140; // compile-time error

Write-only properties

struct ScreenPosition

{
private int _x;
public int X
{
set { this._x = rangeCheckedX(value);
}
}

Console.WriteLine(origin.X); // compile-time error
origin.X = 200; // compiles OK
origin.X += 10; // compile-time error

Property accessibility

it is possible within the property declaration to override the property accessibility for the get and set accessors
struct ScreenPosition

{

private int _x, vy;

public int X {
get { return this._x; } //public
private set { this._x = rangeCheckedX(value); }

}
publicint Y {

get { return this._vy; }

private set { this._y = rangeCheckedY(value); }
}

Property accessibility

* You can change the accessibility of only one of the accessors when you define it.
* The modifier must not specify an accessibility that is less restrictive than that of the property

property restrictions

* You can assign a value through a property of a structure or class only
after the structure or class has been initialized

* You can’t use a property as a ref or an out argument to a method
(although you can use a writable field as a ref or an out argument).

* A property can contain at most one get accessor and one set accessor.
A property cannot contain other methodes, fields, or properties.

* The get and set accessors cannot take any parameters. The data being
assigned is passed to the set accessor automatically by using the
value variable.

* You can’t declare properties by using const,

Declaring interface properties

Interfaces can define properties as well as methods.

interface IScreenPosition

{
int X { get; set; }
intY { get; set; }

* Any class or structure that implements this interface must implement the X
and Y properties with get and set accessor methods.

EXAMPLE

struct ScreenPosition : IScreenPosition{

public int X
{
get{...}
set{...}
}
publicintY
{
get{...}
set{...}
}

declare the property implementations as
virtual

class ScreenPosition : IScreenPosition{
public virtual int X

{
get{...}
set{..}
}
public virtual intY
{
get{..}
set{..}
}

implement a property by using the explicit
interface implementation

* An explicit implementation of a property is nonpublic and nonvirtual (and cannot be
overridden).

struct ScreenPosition : IScreenPosition{
int IScreenPosition.X {

get{..}
set{..}

}

int IScreenPositionY {
get{..}
set{..}

}

Simple get and set

* The principal purpose of properties is to hide the implementation of
fields from the outside world

* The value of the get and set accessors of simply wrap operations :
* Compatibility with applications
e Compatibility with interfaces

Generating automatic properties

class Circle class Circle{
{ private int _radius;
public int Radius{ get; set; } public int Radius{
get { return this._radius;}
} set { this._radius = value;}
}
}

C# compiler converts

note

* The syntax for defining an automatic property is almost identical to
the syntax for defining a property in an interface. The exception is
that an automatic property can specify an access modifier such as
private, public, or protected

a read-only automatic property

class Circle

{
public DateTime CircleCreatedDate { get; }

This is useful in scenarios where you want to create an immutable
property; a property that is and
cannot subsequently be changed.

the date on which an object was created, the name of the user who created it, generate a
unique identifier value

a read-only automatic property - initialize

class Circle{
public Circle() {
CircleCreatedDate = DateTime.Now;

J
public DateTime CircleCreatedDate { get; }

}
or
class Circle{
public DateTime CircleCreatedDate { get; } = DateTime.Now;

}

Initializing objects by using properties

public class Triangle

{
private int sidellength;
private int side2Length;
private int side3Length;
public Triangle(int length1l, int length2, int length3)
{
this.sidelLength = length1;
this.side2Length = length2;
this.side3Length = length3;
}
}

What if the various combinations you want to enable for initializing the fields?

Initializing objects by using properties

public class Triangle

{
private int sidellLength = 10;
private int side2Length = 10;
private int side3Length = 10;
public int SidelLength{set { this.sidelLength = value; }}
public int Side2Length { set { this.side2Length = value; } }
public int Side3Length { set { this.side3Length = value; } }

Initializing objects by using properties

Triangle tril = new Triangle { Side3Length = 15 };

Triangle tri2 = new Triangle { SidelLength = 15, Side3Length = 20 };

Triangle tri3 = new Triangle { Side2Length = 12, Side3Length =17 };

Triangle tri4 = new Triangle { SidelLength = 9, Side2Length = 12,Side3Length = 15 };

Triangle tri5 = new Triangle("Equilateral triangle") { SidelLength = 3, Side2Length = 3, Side3Length =3 };

The important point to remember is that the constructor runs first and the properties are set afterward.

Write code

* Write class polygon

* Fields:
* NumSides (int)
* SideLength (double)

* Use property for fileds

 Constructor
e By default 4 and 10.0

* New three objects
* Default (square)
* Tree sided (triangle)
* 5sided and 15.5 (polygon)

* Write the objects!

